## S3 method for class 'pomp':
abc(object, Nabc = 1, start,
proposal, probes, scale, epsilon,
verbose = getOption("verbose"), ...)
## S3 method for class 'probed.pomp':
abc(object, probes,
verbose = getOption("verbose"), ...)
## S3 method for class 'abc':
abc(object, Nabc, start, proposal,
probes, scale, epsilon,
verbose = getOption("verbose"), ...)
## S3 method for class 'abc':
continue(object, Nabc = 1, \dots)
## S3 method for class 'abc':
conv.rec(object, pars, \dots)
## S3 method for class 'abcList':
conv.rec(object, \dots)
## S3 method for class 'abc':
plot(x, y, pars, scatter = FALSE, \dots)
## S3 method for class 'abcList':
plot(x, y, \dots)
pomp
.probe
for details.TRUE
, draw scatterplots.
If FALSE
, draw traceplots.abc
object.abc
returns an object of class abc
.
One or more abc
objects can be joined to form an abcList
object.abc
method on a abc
object.
By default, the same parameters used for the original ABC run are re-used (except for tol
, max.fail
, and verbose
, the defaults of which are shown above).
If one does specify additional arguments, these will override the defaults.continue
method.
A call to abc
to perform Nabc=m
iterations followed by a call to continue
to perform Nabc=n
iterations will produce precisely the same effect as a single call to abc
to perform Nabc=m+n
iterations.
By default, all the algorithmic parameters are the same as used in the original call to abc
.
Additional arguments will override the defaults.T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf, Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems Journal of the Royal Society, Interface 6:187--202, 2009.
pomp
, probe
, MCMC proposal distributions, and the tutorials on the